Performance evaluation of machine learning algorithms to assess soil erosion in Mediterranean farmland: A case study in Syria
| dc.contributor.author | Mohammed, Safwan | |
| dc.contributor.author | Jouhra, Ali | |
| dc.contributor.author | Enaruvbe, Glory O. | |
| dc.contributor.author | Bashir, Bashar | |
| dc.contributor.author | Barakat, Mona | |
| dc.contributor.author | Alsilibe, Firas | |
| dc.contributor.author | Cimusa Kulimushi, Luc | |
| dc.contributor.author | Alsalman, Abdullah | |
| dc.contributor.author | Szabó, Szilárd | |
| dc.date.accessioned | 2023-02-19T18:01:57Z | |
| dc.date.available | 2023-02-19T18:01:57Z | |
| dc.date.issued | 2023 | |
| dc.date.oa | 2024-09-05 | |
| dc.date.pasync | 2024-09-05T23:08:20Z | |
| dc.date.updated | 2023-02-19T18:01:56Z | |
| dc.description.corrector | LB | |
| dc.identifier.citation | Land Degradation & Development. -[Epub ahead of print] : - (2023), p.1-38. -Land Degrad. Dev. - 1085-3278 | |
| dc.identifier.doi | http://dx.doi.org/10.1002/ldr.4655 | |
| dc.identifier.issn | 1085-3278 | |
| dc.identifier.opac | https://ebib.lib.unideb.hu/ebib/CorvinaWeb?action=cclfind&resultview=long&ccltext=idno+BIBFORM108818 | |
| dc.identifier.scopus | 85151408992 | |
| dc.identifier.uri | https://hdl.handle.net/2437/345880 | |
| dc.identifier.url | https://onlinelibrary.wiley.com/doi/10.1002/ldr.4655 | |
| dc.identifier.wos | 000956899600001 | |
| dc.language | eng | |
| dc.rights.access | open access article | |
| dc.rights.owner | szerzők | |
| dc.subject.mab | Természettudományok | |
| dc.subject.mab | Földtudományok | |
| dc.title | Performance evaluation of machine learning algorithms to assess soil erosion in Mediterranean farmland: A case study in Syria | |
| dc.type | folyóiratcikk | |
| dc.type | idegen nyelvű folyóiratközlemény külföldi lapban |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 2 (Összesen 2)
Nincs kép
- Név:
- Land Degrad Dev - 2023 - Mohammed - Performance evaluation of machine learning algorithms to assess soil erosion in.pdf
- Méret:
- 3.39 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- Kiadói változat
Nincs kép
- Név:
- FILE_UP_1_Land-Degrad-Dev-2023-Mohammed-Performance-evaluation-of-machine-learning-algorithms-to-assess-soil-erosion-in.pdf
- Méret:
- 3.74 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- post-print