Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data

dc.contributor.authorPirmani, Ashkan
dc.contributor.authorDe Brouwer, Edward
dc.contributor.authorArany, Ádám
dc.contributor.authorOldenhof, Martijn
dc.contributor.authorPassemiers, Antoine
dc.contributor.authorFaes, Axel
dc.contributor.authorKalincik, Tomas
dc.contributor.authorOzakbas, Serkan
dc.contributor.authorGouider, Riadh
dc.contributor.authorWillekens, Barbara
dc.contributor.authorHorakova, Dana
dc.contributor.authorHavrdova, Eva
dc.contributor.authorPatti, Francesco
dc.contributor.authorPrat, Alexandre
dc.contributor.authorLugaresi, Alessandra
dc.contributor.authorTomassini, Valentina
dc.contributor.authorGrammond, Pierre
dc.contributor.authorCartechini, Elisabetta
dc.contributor.authorRoos, Izanne
dc.contributor.authorBoz, Cavit
dc.contributor.authorAlroughani, Raed
dc.contributor.authorAmato, Maria Pia
dc.contributor.authorBuzzard, Katherine
dc.contributor.authorLechner-Scott, Jeannette
dc.contributor.authorGuimaraes, Joana
dc.contributor.authorSolaro, Claudio
dc.contributor.authorGerlach, Oliver
dc.contributor.authorSoysal, Aysun
dc.contributor.authorKuhle, Jens
dc.contributor.authorSanchez-Menoyo, Jose
dc.contributor.authorSpitaleri, Daniele
dc.contributor.authorCsépány, Tünde
dc.contributor.authorWijmeersch, Bart Van
dc.contributor.authorAmpapa, Radek
dc.contributor.authorPrevost, Julie
dc.contributor.authorKhoury, Samia J.
dc.contributor.authorPesch, Vincent van
dc.contributor.authorJohn, Nevin
dc.contributor.authorMaimone, Davide
dc.contributor.authorWeinstock-Guttman, Bianca
dc.contributor.authorLaureys, Guy
dc.contributor.authorMcCombe, Pamela
dc.contributor.authorBlanco, Yolanda
dc.contributor.authorAltintas, Ayse
dc.contributor.authorAl-Asmi, Abdullah
dc.contributor.authorGarber, Justin
dc.contributor.authorWalt, Anneke van der
dc.contributor.authorButzkueven, Helmut
dc.contributor.authorde Gans, Koen
dc.contributor.authorRózsa, Csilla
dc.contributor.authorTaylor, Bruce V.
dc.contributor.authorAl-Harbi, Talal
dc.contributor.authorSas, Attila
dc.contributor.authorRajda, Cecília
dc.contributor.authorGray, Orla
dc.contributor.authorDecoo, Danny
dc.contributor.authorCarroll, William M.
dc.contributor.authorKermode, Allan G.
dc.contributor.authorFabis-Pedrini, Marzena
dc.contributor.authorMason, Deborah
dc.contributor.authorPerez-Sempere, Angel
dc.contributor.authorSimu, Mihaela
dc.contributor.authorShuey, Neil
dc.contributor.authorSinghal, Bhim
dc.contributor.authorCauchi, Marija
dc.contributor.authorHardy, Todd A.
dc.contributor.authorRamanathan, Sudarshini
dc.contributor.authorLalive, Patrice H.
dc.contributor.authorSirbu, Carmen-Adella
dc.contributor.authorHughes, Stella
dc.contributor.authorCastillo Triviño, Tamara
dc.contributor.authorPeeters, Liesbet
dc.contributor.authorMoreau, Yves
dc.date.accessioned2025-10-24T19:56:56Z
dc.date.available2025-10-24T19:56:56Z
dc.date.issued2025
dc.date.oa2025-11-11
dc.date.pasync2025-10-30T00:10:13Z
dc.date.updated2025-10-24T19:56:56Z
dc.description.correctorbkata
dc.identifier.citationnpj Digital Medicine. -8 : 1 (2025), p. 1-15. -(cikkazonosító)478. -npj Digit. Med. - 2398-6352
dc.identifier.doihttp://dx.doi.org/10.1038/s41746-025-01788-8
dc.identifier.issn2398-6352
dc.identifier.opachttps://ebib.lib.unideb.hu/ebib/CorvinaWeb?action=cclfind&resultview=long&ccltext=idno+BIBFORM132947
dc.identifier.scopus105011413182
dc.identifier.urihttps://hdl.handle.net/2437/398122
dc.identifier.urlhttps://www.nature.com/articles/s41746-025-01788-8
dc.identifier.wos001536298500003
dc.languageeng
dc.rights.accessopen access article
dc.rights.ownerszerző
dc.subject.mabOrvostudományok
dc.subject.mabKlinikai orvostudományok
dc.titlePersonalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data
dc.typefolyóiratcikk
dc.typeidegen nyelvű folyóiratközlemény külföldi lapban
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
FILE_UP_0_Copy Personalized federated learning NPJ 41746_2025_Article_1788.pdf
Méret:
1.14 MB
Formátum:
Adobe Portable Document Format
Leírás:
Kiadói változat