KöMaL problem in a new view
dc.contributor.author | Dályay, Pál Péter | |
dc.date.accessioned | 2024-09-04T09:44:43Z | |
dc.date.available | 2024-09-04T09:44:43Z | |
dc.date.issued | 2003-12-01 | |
dc.description.abstract | The object of this paper is finding the general solution f : R^3 → R of the system of functional equations (1) valid for all x, y, z, t ϵ R. First f is expressed by a function of one variable which satisfies a system of two functional equations.This system is resolved by using an algebraic reformulation of the problem in terms of orbits and transversals. Finally the general solution of (1) is obtained. | en |
dc.format | application/pdf | |
dc.identifier.citation | Teaching Mathematics and Computer Science, Vol. 1 No. 2 (2003) , 191-201 | |
dc.identifier.doi | https://doi.org/10.5485/TMCS.2003.0019 | |
dc.identifier.eissn | 2676-8364 | |
dc.identifier.issn | 1589-7389 | |
dc.identifier.issue | 2 | |
dc.identifier.jatitle | Teach. Math. Comp. Sci. | |
dc.identifier.jtitle | Teaching Mathematics and Computer Science | |
dc.identifier.uri | https://hdl.handle.net/2437/379504 | |
dc.identifier.volume | 1 | |
dc.language | en | |
dc.relation | https://ojs.lib.unideb.hu/tmcs/article/view/14694 | |
dc.rights.access | Open Access | |
dc.rights.owner | Pál Péter Dályay | |
dc.subject | general solution of a system of functional equations | en |
dc.subject | transformation group | en |
dc.subject | orbit | en |
dc.subject | transversal | en |
dc.title | KöMaL problem in a new view | en |
dc.type | folyóiratcikk | hu |
dc.type | article | en |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)