Unsupervised classification of high resolution satellite imagery by self-organizing neural network

dc.contributor.authorBarsi, Árpád
dc.contributor.authorGáspár, Katalin
dc.contributor.authorSzepessy, Zsuzsanna
dc.date.accessioned2021-06-28T11:08:19Z
dc.date.available2021-06-28T11:08:19Z
dc.date.issued2010-10-16
dc.description.abstractThe current paper discusses the importance of the modern high resolution satellite imagery. The acquired high amount of data must be processed by an efficient way, where the used Kohonen-type self-organizing map has been proven as a suitable tool. The paper gives an introduction to this interesting method. The tests have shown that the multispectral image information can be taken after a resampling step as neural network inputs, and then the derived network weights are able to evaluate the whole image with acceptable thematic accuracy.en
dc.formatapplication/pdf
dc.identifier.citationActa Geographica Debrecina Landscape & Environment series, Vol. 4 No. 1 (2010) , 37-44
dc.identifier.eissn1789-7556
dc.identifier.issn1789-4921
dc.identifier.issue1
dc.identifier.jatitleLandsc. environ.
dc.identifier.jtitleActa Geographica Debrecina Landscape & Environment series
dc.identifier.urihttps://hdl.handle.net/2437/317393en
dc.identifier.volume4
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/landsenv/article/view/2273
dc.rights.accessOpen Access
dc.subjectartificial neural networken
dc.subjectclusteringen
dc.subjecthigh resolution imageryen
dc.titleUnsupervised classification of high resolution satellite imagery by self-organizing neural networken
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
pdf
Méret:
843.71 KB
Formátum:
Adobe Portable Document Format