Development of prediction models to select older RA patients with comorbidities for treatment with chronic low-dose glucocorticoids

dc.contributor.authorHartman, Linda
dc.contributor.authorda Silva, José A P
dc.contributor.authorButtgereit, Frank
dc.contributor.authorCutolo, Maurizio
dc.contributor.authorOpris-Belinski, Daniela
dc.contributor.authorSzekanecz, Zoltan
dc.contributor.authorMasaryk, Pavol
dc.contributor.authorVoshaar, Marieke J H
dc.contributor.authorHeymans, Martijn W
dc.contributor.authorLems, Willem F
dc.contributor.authorvan der Heijde, Désirée M F M
dc.contributor.authorBoers, Maarten
dc.contributor.authorSzekanecz Zoltán (1964-) (reumatológus, belgyógyász, immunológus)
dc.contributor.submitterdepBelgyógyászati Intézet -- 84
dc.contributor.submitterdepReumatológiai Tanszék -- 61
dc.contributor.submitterdepÁOK
dc.contributor.submitterdepDebreceni Egyetem
dc.date.accessioned2023-07-18T08:34:16Z
dc.date.available2023-07-18T08:34:16Z
dc.date.oa2023-08-07
dc.date.updated2023-07-18T08:34:16Z
dc.description.abstractObjective: To develop prediction models for individual patient harm and benefit outcomes in elderly patients with RA and comorbidities treated with chronic low-dose glucocorticoid therapy or placebo. Methods: In the Glucocorticoid Low-dose Outcome in Rheumatoid Arthritis (GLORIA) study, 451 RA patients 65 years of age were randomized to 2 years 5 mg/day prednisolone or placebo. Eight prediction models were developed from the dataset in a stepwise procedure based on prior knowledge. The first set of four models disregarded study treatment and examined general predictive factors. The second set of four models was similar but examined the additional role of low-dose prednisolone. In each set, two models focused on harm [the occurrence of one or more adverse events of special interest (AESIs) and the number of AESIs per year) and two on benefit (early clinical response/disease activity and a lack of joint damage progression). Linear and logistic multivariable regression methods with backward selection were used to develop the mod- els. The final models were assessed and internally validated with bootstrapping techniques. Results: A few variables were slightly predictive for one of the outcomes in the models, but none were of immediate clinical value. The quality of the prediction models was sufficient and the performance was low to moderate (explained variance 12–15%, area under the curve 0.67–0.69). Conclusion: Baseline factors are not helpful in selecting elderly RA patients for treatment with low-dose prednisolone given their low power to predict the chance of benefit or harm.
dc.description.correctorkzs
dc.identifier.citationRheumatology. -62 : 5 (2023), p. 1824-1833. -RHEUMATOLOGY. -1462-0324. -1462-0332
dc.identifier.doi10.1093/rheumatology/keac547
dc.identifier.issn1462-0324. -
dc.identifier.issn1462-0332
dc.identifier.opachttps://ebib.lib.unideb.hu/ebib/CorvinaWeb?action=cclfind&resultview=long&ccltext=idno+BIBFORM113494
dc.identifier.urihttps://hdl.handle.net/2437/357633
dc.identifier.urlhttps://academic.oup.com/rheumatology/article/62/5/1824/6722612
dc.languageeng
dc.rights.accessopen access article
dc.rights.ownerszerző
dc.subject.otheridegen nyelvű folyóiratközlemény külföldi lapban
dc.titleDevelopment of prediction models to select older RA patients with comorbidities for treatment with chronic low-dose glucocorticoids
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
FILE_UP_1_Development of prediction models to select older RA patients with comorbidities for treatment with chronic low-dose glucocorticoids.pdf
Méret:
641.74 KB
Formátum:
Adobe Portable Document Format
Leírás:
kiadói változat