Improving yield prediction accuracy using energy balance trial, on-the-go and remote sensing procedure

dc.contributor.authorKulmány, István
dc.contributor.authorZsebő, Sándor
dc.contributor.authorNyéki, Anikó
dc.contributor.authorMilics, Gábor
dc.contributor.authorKovács, Attila József
dc.contributor.authorNeményi, Miklós
dc.contributor.statusBSc, MSc hallgatóhu_HU
dc.contributor.statusPhD hallgatóhu_HU
dc.contributor.statusegyetemi oktató, kutatóhu_HU
dc.coverage.temporal2018.06.29.hu_HU
dc.date.accessioned2019-04-26T10:08:27Z
dc.date.available2019-04-26T10:08:27Z
dc.description.abstractOur long term experience in the ~23.5 ha research field since 2001 shows that decision support requires complex databases from each management zone within that field (eg. soil physical and chemical parameters, technological, phenological and meteorological data). In the absence of PA sustainable biomass production cannot be achieved. The size of management zones will bw ever smaller. Consequently, the on the go and remote sensing data collection should be preferred. The paper presents the results of ECa and near-surface hyperspectral measurements. For the increase in accuracy of yield prediction of DS models the energy input-output analysis in the management zones can also be used.hu_HU
dc.format.extent1-9hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/266261
dc.language.isoenhu_HU
dc.subjectEnergy input-output in management zoneshu_HU
dc.subjectaccuracy of maize yield predictionhu_HU
dc.subjectincreasing of databasehu_HU
dc.subject.disciplinetudományterületek::növénytudományokhu_HU
dc.titleImproving yield prediction accuracy using energy balance trial, on-the-go and remote sensing procedurehu_HU
dc.typeproceedingshu_HU
Fájlok