Szerző szerinti böngészés "Herendi, Orsolya"
Megjelenítve 1 - 3 (Összesen 3)
Találat egy oldalon
Rendezési lehetőségek
Tétel Szabadon hozzáférhető Finiteness results for some families of polynomial Diophantine equations(2025) Szilágyi-Herendi, Orsolya; Hajdu, Lajos; Herendi, Orsolya; Matematika- és számítástudományok doktori iskola; Természettudományi és Technológiai KarA disszertációban különböző polinomiális diofantikus egyenleteket tanulmányoztunk, ahol a vizsgált polinomok valamilyen specifikus, érdekes és/vagy fontos tulajdonsággal rendelkező családhoz tartoznak. Kutatásunk három részre osztható. Az első téma, amit tanulmányoztunk, a következő: mit mondhatunk az egész pontok számáról bizonyos "érdekes" halmazokban (például egyes szabályos testekben)? Leginkább az n-dimenziós kockára, gúlára és szimplexre koncentráltunk. Mi most ezeknek a testeknek a felületén található egész pontok számlálásának a problémájával foglalkoztunk. A következő témánk kiindulópontja Erdős és Selfridge egy klasszikus tétele: két vagy több egymást követő pozitív egész szám szorzata nem lehet teljes hatvány. Ennek a problémának több különböző kiterjesztése is ismert. Az egyik irány az, hogy mennyire lehet megzavarni ezt a struktúrát úgy, hogy hasonló végességi eredményeket kapjunk. Mi olyan polinomokat vizsgáltunk, melyek gyökei szimmetrikusak, de megengedtünk tetszőlegesen nagy különbségeket közöttük. Végül, a disszertáció ötödik fejezetében a Littlewood polinomok, azaz a +1, -1 együtthatójú polinomok négyzet értékeit vizsgáltuk. A megoldások számának végessége szempontjából a Littlewood polinomok polinomértékeit Hajdu, Tijdeman és Varga már tanulmányozták. Mi az egyenlet összes megoldásának leírására törekedtünk. Különböző módszerek (például elliptikus görbék, hiperelliptikus görbék, Runge-módszer) kombinálásával sikerült megadnunk az összes megoldást abban az esetben, amikor n=3,5, illetve n 2 és 24 közötti páros szám.Tétel Korlátozottan hozzáférhető Kétváltozós polinomiális diofantikus egyenletekHerendi, Orsolya; Hajdu, Lajos; DE--Természettudományi és Technológiai Kar--Matematikai IntézetA dolgozat témája n dimenziós rácsokban néhány szabályos test felületén lévő rácspontok számát leíró polinomok vizsgálata. Megvizsgáljuk ezeknek a polinomoknak a gyökszerkezetét és eredményeket közlünk az ezekből képzett kétváltozós polinomiális diofantikus egyenletek megoldásainak a számáról.Tétel Korlátozottan hozzáférhető Rácspontszámláló polinomok polinomértékeiHerendi, Orsolya; Hajdu, Lajos; DE--Természettudományi és Technológiai Kar--Matematikai IntézetA dolgozatomban n-dimenziós szabályos testek (rendre kocka, piramis és szimplex) felszínén található rácspontok számlálópolinomjainak polinomértékeit, azaz az $F_n(x)=g(y),$ $G_n(x)=g(y),$ illetve $H_n(x)=g(y)$ szeparábilis diofantikus egyenleteket vizsgálom, ahol $$F_n(x):=(x+1)^n−(x-1)^n,$$ $$G_n(x):=(x+1)^{n-1}+x^{n-1}$$ és $$H_n(x):=\binom{x+n}{n}-\binom{x-1}{n},$$ továbbá $g$ egy racionális együtthatós polinom. A dolgozatom három új eredményt tartalmaz. Az elsőben $n \geq 6$ és $\deg g \geq 3$ esetén, két kivételes esettől eltekintve, ineffektív végességi eredményt bizonyítok a fenti egyenletek $x, y$ egész megoldásaira. A bizonyítás Bilu és Tichy szeparábilis diofantikus egyenletekre vonatkozó ineffektív végességi kritériumán valamint a harmadik tételemen alapul, amelyben leírom, hogy milyen körülmények között írható a fenti három polinom két legalább másodfokú polinom kompozíciójaként. A második tételben a $F_n(x)=g(y),$ $G_n(x)=g(y),$ illetve $H_n(x)=g(y)$ egyenletek $g(y)=Ay^\ell+B$ esetét tekintem, amelyben csak az $A, B, n$ értékektől függő effektív korlátot adok $n \geq 4$ esetén az $\ell$ kitevőre; illetve rögzített $\ell\geq2$ és $n \geq 8$ esetén az $x, y$ egész megoldások abszolútértékére. Ennek bizonyításához meghatározom a vizsgált polinomok, első deriváltjuk és eltoltjaik gyökszerkezetét, majd alkalmazom Schinzel és Tijdeman illetve Brindza szuperelliptikus egyenletekre vonatkozó fent említett eredményeit.