Convergence of Cesáro means with variable parameters of Walsh-Fourier series

dc.contributor.advisorTamás, Gát György
dc.contributor.authorAbu Joudeh, Anas Ahmad
dc.contributor.authorvariantAbu Joudeh, Anas Ahmad
dc.contributor.departmentMatematika- és számítástudományok doktori iskolahu
dc.contributor.submitterdepDE--Természettudományi és Technológiai Kar -- Mathematical and Computational Sciences
dc.date.accessioned2020-12-07T20:51:33Z
dc.date.available2020-12-07T20:51:33Z
dc.date.created2020hu_HU
dc.date.defended2021-02-24
dc.description.abstractThis Dissertation talks about convergence of Cesáro means with variable parameters for Walsh-Fourier series. we present some important and well-known notions and definitions related to the new results appearing in the thesis where we introduced the notion of Cesáro means of Fourier series with variable parameters. And we proved the almost everywhere convergence of a subsequnce of the Cesáro (C , α2n) means of integrable functions. And we introduced the notion of Cesáro means of Fourier series with variable parameters. We proved the almost everywhere convergence of the Cesáro (C , αn) means of integrable functions. And we formulated and proved that the maximal operator of some (C , βn) means of cubical partial sums of two variable Walsh-Fourier series of integrable functions is of weak type (L1,L1).hu_HU
dc.format.extent84hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/299345
dc.language.isoenhu_HU
dc.subjectCesaro meanshu_HU
dc.subjectWalsh-Paley systemhu_HU
dc.subjectFejer meanshu_HU
dc.subjectWalsh-Fourier coefficientshu_HU
dc.subjectWalsh- Fourier serieshu_HU
dc.subject.disciplineMatematika- és számítástudományokhu
dc.subject.sciencefieldTermészettudományokhu
dc.titleConvergence of Cesáro means with variable parameters of Walsh-Fourier serieshu_HU
dc.title.translatedConvergence of Cesáro means with variable parameters of Walsh-Fourier serieshu_HU
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 2 (Összesen 2)
Nincs kép
Név:
PhD_Dissertation._Anas_Abu_Joudeh_titkositott.pdf
Méret:
789.26 KB
Formátum:
Adobe Portable Document Format
Leírás:
Dissertation
Nincs kép
Név:
PhD_Thesis._Anas_Abu_Joudeh_titkositott.pdf
Méret:
1.23 MB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.93 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: