A Scalable Parallel Algorithm for Decision Support from Multidimensional Sequence Data
Dátum
2011
Szerzők
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Absztrakt
In this work, we describe a multidimensional sequence model and then represent a parallel algorithm. We improve the primary parallel algorithm with two modification rules. Two approaches follow the level-wise approach and all participating processors or workers generate candidate sequences and count their supports independently. Our experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.
Leírás
Kulcsszavak
Matematika- és számítástudományok, Természettudományok