On convexity with respect to Chebyshev systems and Cauchy-Schwarz type inequalities for solutions of Levi-Civita-type functional equations

dc.contributor.advisorDr. Páles, Zsolt
dc.contributor.authorShihab, Mahmood Kamil
dc.contributor.departmentMatematika- és számítástudományok doktori iskolahu
dc.contributor.submitterdepTermészettudományi és Technológiai Kar::Matematikai Intézet::Analízis Tanszék
dc.date.accessioned2024-04-19T20:11:11Z
dc.date.available2024-04-19T20:11:11Z
dc.date.created2024-04-15
dc.date.defended2024-06-17
dc.description.abstractIn 2009, Maksa and Páles established an extension of the decomposition theorem of Ng in the context of higher-order convexity notions. They proved that a real function is Wright convex of order n if and only if it can be decomposed as the sum of a convex function of order n and a polynomial function of order at most n. Their proof was based on transfinite tools in the background. The main purpose of Chapter one is to adopt the methods of a paper of Páles published in 2020 and establish a new and elementary proof for the theorem of Maksa and Páles. The main purpose of Chapter two is to introduce various convexity concepts in terms of a positive Chebyshev system ω and give a systematic investigation of the relations among them. We generalize a celebrated theorem of Bernstein-Doetsch to the setting of ω-Jensen convexity. We also give sufficient conditions for the existence of discontinuous ω-Jensen affine functions. The concept of Wright convexity is extended to the setting of Chebyshev systems, as well, and it turns out to be an intermediate convexity property between ω-convexity and ω-Jensen convexity. For certain Chebyshev systems, we generalize the decomposition theorems of Wright convex and higher-order Wright convex functions obtained by C. T. Ng in 1987 and by Maksa and Páles in 2009, respectively. The main goal of Chapter three is to show that if a real valued function defined on a groupoid satisfies a certain Levi-Civita-type functional equation, then it also fulfills a Cauchy-Schwarz-type functional inequality. In particular, if the groupoid is the multiplicative structure of commutative ring, then we can establish the existence of nontrivial additive functions satisfying inequalities connected to the multiplicative structure.
dc.format.extent83
dc.identifier.urihttps://hdl.handle.net/2437/369096
dc.language.isoen
dc.subjectConvexity, Jensen convexity, Higher-order convexity, higher-order Wright convexity, higher-order Jensen convexity, Wright convexity with respect to a Chebyshev system, Levi-Civita-type functional equation, Cauchy Schwarz-type functional inequality and additive function
dc.subject.disciplineMatematika- és számítástudományokhu
dc.subject.sciencefieldTermészettudományokhu
dc.titleOn convexity with respect to Chebyshev systems and Cauchy-Schwarz type inequalities for solutions of Levi-Civita-type functional equations
dc.title.translatedCsebisev-rendszerekre vonatkozó konvexitás és Levi-Civita-típusú függvényegyenletek megoldásaira vonatkozó Cauchy-Schwarz-típusú egyenlőtlenségek
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 3 (Összesen 3)
Nincs kép
Név:
Shihab-PhD-Dissertation.pdf
Méret:
842.55 KB
Formátum:
Adobe Portable Document Format
Nincs kép
Név:
Shihab-PhD-Short Thesis.pdf
Méret:
814.67 KB
Formátum:
Adobe Portable Document Format
Nincs kép
Név:
Shihab Mahmood Kamil_meghívó.docx.pdf
Méret:
562.44 KB
Formátum:
Adobe Portable Document Format
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.93 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: